13,417 research outputs found

    Barrier inhomogeneities of Al/p-In2Te3 thin film Schottky diodes

    Get PDF
    The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of p-In2Te3/Al thin films Schottky diodes papered by Flash Evaporation technique were measured in the temperature range 303-335 K have been interpreted on the basis of the assumption of a Gaussian distribution of barrier heights (ฯ†bo) due to barrier height inhomogeneities that prevail at the interface. It has been found that the occurrence of Gaussian distribution of BHs is responsible for the decrease of the apparent BH (ฯ†bo) and increase of the ideality factor (ฮท). The inhomogeneities are considered to have a Gaussian distribution with a mean barrier height of (ฯ†bm) and standard deviation (ฯƒs) at zero-bias. Furthermore, the activation energy value (ฯ†b) at T = 0 and Richardson constant (A**) value was obtained as 0.587 eV and 3.09 Acmโ€“ 2 Kโ€“ 1 by means of usual Richardson plots. Hence, it has been concluded that the temperature dependence of the I-V characteristics of p-In2Te3/Al Schottky Diodes can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the BHs. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2790

    Separating the roles of electrons and holes in the organic magnetoresistance of aluminum tris(8-hydroxyquinoline) organic light emitting diodes

    Get PDF
    Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 104, 083703 (2008) and may be found at

    STABILITY STUDY: REGULATORY REQUIRENMENT

    Get PDF
    Stability is an essential factor of quality, safety and efficacy of a drug product. The objective of stability study is to determine the shelf life, the time period of storage at a specified condition within which the drug product still meets its established specifications. Stability study is of three types that is physical, chemical and microbial stability. Various factors like oxygen, water, temperature, pH, moisture, light and concentration affect the stability. Present work aims to represent the stability testing (ST) requirements of International Conference on Harmonization (ICH), different regulatory agencies like, World Health Organization (WHO), Association of South East Asian Nations (ASEAN) and European Agency for Evaluation of Medicinal and Health Products (EMEA) and difference of those agencies with respect to ICH guideline. Most of the stability requirements for WHO, ASEAN, and EMEA are similar to the ICH guideline, except for the parameters like selection of batches and storage conditions

    All Recent Mars Landers Have Landed Downrange - Are Mars Atmosphere Models Mis-Predicting Density?

    Get PDF
    All recent Mars landers (Mars Pathfinder, the two Mars Exploration Rovers Spirit and Opportunity, and the Mars Phoenix Lander) have landed further downrange than their pre-entry predictions. Mars Pathfinder landed 27 km downrange of its prediction [1], Spirit and Opportunity landed 13.4 km and 14.9 km, respectively, downrange from their predictions [2], and Phoenix landed 21 km downrange from its prediction [3]. Reconstruction of their entries revealed a lower density profile than the best a priori atmospheric model predictions. Do these results suggest that there is a systemic issue in present Mars atmosphere models that predict a higher density than observed on landing day? Spirit Landing: The landing location for Spirit was 13.4 km downrange of the prediction as shown in Fig. 1. The navigation errors upon Mars arrival were very small [2]. As such, the entry interface conditions were not responsible for this downrange landing. Consequently, experiencing a lower density during the entry was the underlying cause. The reconstructed density profile that Spirit experienced is shown in Fig. 2, which is plotted as a fraction of the pre-entry baseline prediction that was used for all the entry, descent, and landing (EDL) design analyses. The reconstructed density is observed to be less dense throughout the descent reaching a maximum reduction of 15% at 21 km. This lower density corresponded to approximately a 1- low profile relative to the dispersions predicted. Nearly all the deceleration during the entry occurs within 10- 50 km. As such, prediction of density within this altitude band is most critical for entry flight dynamics analyses and design (e.g., aerodynamic and aerothermodynamic predictions, landing location, etc.)

    Line shifts in the first overtone of DF broadened by HF

    Get PDF
    Line spectra shifts in HF and in first overtone band of DF induced by HF pressure

    Thermal Dissolution of Lignite Under Hydrogen Pressure

    Get PDF
    The hydrogenation-solution reaction of North Dakota lignite was studied with various organic solvents in a batch microautoclave at reaction conditions of 740 degrees F. and 1500 psig. initial hydrogen pressure. The solvents included aliphatic, aromatic, cycloparaffinic, heterocyclic, phenolic and amino compounds. The extent of dissolution was measured from the amount of residue retained on an asbestos filter-mat after it was washed and dried. It was found that the hydroaromatic compounds were very effective, giving more than 70 percent solubilization of lignite in solution reaction. Four lignites from different mines in the Northern Great Plains Provinces were dissolved in tetralin at the same operating conditions to study the effect of composition of lignite on the solution reaction. Lignites studied ranged from 71 percent to 82 percent solubilization. There was no evident correlation between the extent of solubilization and the proximate analysis. Also, the percent solubilization and the heating value of lignite did not show any correlation in the samples studied

    The Oxidation of Azo Dyes and Its Relation to Light Fading

    Get PDF
    The action of light on dyed fibres in air appears in many cases to involve an oxidation of the dye. The present work has been a preliminary to the fuller investigation of the photochemistry of azo dyes several series of simple monoazo dyes have been examined. A study of thermal oxidation in solution by common oxidising agents was followed by comparison with a series of measurements of relative light fastness in an attempt to elucidate the mechanism of the light fading process. The work has confirmed that oxidation of azo dyes in aqueous media, with several common reagents, e.g., ceric sulphate, potassium dichromate or hydrogen peroxide, disrupts the azo group and leads to the formation of a diazo compound and a quinone. subsequently, these further decompose to give, respectively, a phenol and nitrogen (in acid media); and phthalic acid. The reaction thus appears to be common to many types of oxidising agent, since previous workers have observed similar effects with, e.g., sodium hypochlorite, lead dioxide and ozone. An acceptor has been used to combine with the quinone formed and thus enable it to be identified without danger of its further oxidation. By boiling the acid solution after oxidising the dye a quantitative yield of nitrogen from the azo group is obtained, except when free amino groups are also present. This procedure could be used in quantitative analysis. An hypothesis is put forward suggesting that the initial step in such chemical oxidation is one of hydrolytic attack on the -C= N- bond of the dye, when it is present as the hydrazone and not the azo tautomer. In order to confirm or disprove the postulated hypothesis, several dyes containing nitro, chloro, methyl, methoxy or sulphonic and carboxylic acid groups in various positions in the phenyl nucleus in the following parent dyes, were prepared. The rates of oxidation of the water-soluble dyes in presence of various oxidising agents, such as neutral and alkaline hydrogen peroxide, potassium persulphate and dilute nitric acid were studied quantitatively. In the case of the insoluble dyes the rate of nitrogen evolution was examined as a measure of ease of oxidation. To correlate the oxidation of azo dyes with their relative light fastness, the above dyes were exposed in graded depths on substrates of wool, cellulose (cotton and filter paper), unglazed tile, and anodised aluminium. The last two materials were chosen in the hope they might he inert substrates. Fading and oxidation data were plotted against Hammett sigma values to determine the effect of substituents in the phenyl nucleus. The results appear to show that fading on wool is caused by hydrogen peroxide, which it is suggested may be produced by photolysis of the fibre itself, whereas on other substrates some other disruption process of the dye molecule occurs, perhaps by attack of atmospheric oxygen. The results also signify that the initial step in fading is a simple reaction involving attack at one of the unsaturated centres of the dye molecule

    เชธเซเชฐเซ‡เชจเซเชฆเซเชฐเชจเช—เชฐ เชœเชฟเชฒเซเชฒเชพเชจเซ€ เชถเซˆเช•เซเชทเชฃเชฟเช• เชธเช‚เชธเซเชฅเชพเช“เชจเซ เชธเชพเชฎเชพเชœเชฟเช• เชชเซเชฐเชฆเชพเชจ

    Get PDF
    เชถเชฟเช•เซเชทเชฃ เชธเชฎเชพเชœเชจเชพ เชตเชฟเช•เชพเชธเชจเซ‹ เชชเชพเชฏเซ‹ เช›เซ‡. เชถเชฟเช•เซเชทเชฃ เชฎเชพเชจเชตเซ€เชจเซ€ เช†เช‚เชคเชฐเชฟเช• เชถเช•เซเชคเชฟเชจเซ‹ เชตเชฟเช•เชพเชธ เช•เชฐเชคเซเช‚ เชนเซ‹เชตเชพเชฅเซ€ เชคเชฅเชพ เชคเซ‡ เชฎเชพเชจเชต เช˜เชกเชคเชฐเชจเซ€ เชฎเซเช–เซเชฏ เชธเชพเชฎเชพเชœเชฟเช• เช•เซเชฐเชฟเชฏเชพ เชนเซ‹เชตเชพเชฅเซ€ เชคเซ‡เชจเซเช‚ เชธเซเชฅเชพเชจ เชฎเชพเชจเชตเชœเซ€เชตเชจเชฎเชพเช‚ เชถเซเชฐเซ‡เชทเซเช  เช›เซ‡. เชถเชฟเช•เซเชทเชฃ เชถเชพเชธเซเชคเซเชฐเซ€เช“ เช…เชจเซ‡ เชธเชฎเชพเชœเชถเชพเชธเซเชคเซเชฐเซ€เช“เช เชถเชพเชณเชพเชจเซ‡ เชธเชพเชฎเชพเชœเชฟเช• เชตเซเชฏเชตเชธเซเชฅเชพ เชคเชฐเซ€เช•เซ‡ เช“เชณเช–เชพเชตเซ€ เช›เซ‡. เชถเซˆเช•เซเชทเชฃเชฟเช• เชธเช‚เชธเซเชฅเชพเช“ เชตเชฟเชฆเซเชฏเชพเชฐเซเชฅเซ€เช“ เช…เชจเซ‡ เชคเซ‡ เชฅเช•เซ€ เชธเชฎเชพเชœเชฎเชพเช‚ เชœเซ€เชตเชจเชตเชฟเช•เชพเชธ เชฎเชพเชŸเซ‡เชจเซเช‚ เชคเชพเชฒเซ€เชฎ เช•เซ‡เชจเซเชฆเซเชฐ เช›เซ‡. เช† เชถเซˆเช•เซเชทเชฃเชฟเช• เชธเช‚เชธเซเชฅเชพเช“ เชธเชฎเชพเชœเชจเชพเช‚ เชตเชฟเช•เชพเชธ เชฎเชพเชŸเซ‡ เช•เชฏเชพเช‚ เชชเซเชฐเช•เชพเชฐเชจเซ€ เชถเซˆเช•เซเชทเชฃเชฟเช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“ เช•เชฐเซ‡ เช›เซ‡. เช…เชจเซ‡ เชคเซ‡ เชฆเซเชตเชพเชฐเชพ เช•เชˆ เช•เชˆ เชธเชพเชฎเชœเซ€เช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“ เชนเชพเชฅ เชงเชฐเซ‡ เช›เซ‡. เช† เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“ เชนเชพเชฅ เชงเชฐเซ‡ เช›เซ‡. เช† เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“ เชนเชพเชฅ เชงเชฐเซ‡ เช›เซ‡. เช† เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“เชจเซ€ เชคเชชเชพเชธ เช•เชฐเชตเชพเชจเซ‹ เชชเซเชฐเชฏเชพเชธ เชชเซเชฐเชธเซเชคเซเชค เชธเช‚เชถเซ‹เชงเชจเชฎเชพเช‚ เช•เชฐเชตเชพเชฎเชพเช‚ เช†เชตเซเชฏเซ‹ เชนเชคเซ‹. เชถเชฟเช•เซเชทเชฃเชจเซ‹ เชตเซเชฏเชพเชช เช–เซ‚เชฌ เชœ เชตเชงเซ€ เชฐเชนเซเชฏเซ‹ เช›เซ‡. เชคเซ‡เชฎเชœ เชตเชฟเชตเชฟเชง เช•เซเชทเซ‡เชคเซเชฐเซ‹เชฎเชพเช‚ เชตเชงเชคเชพ-เชœเชคเชพ เชชเชฐเชฟเชตเชฐเซเชคเชจเซ‹เชจเซ‡ เช•เชพเชฐเชฃเซ‡ เชถเซˆเช•เซเชทเชฃเชฟเช• เชธเช‚เชธเซเชฅเชพเช“, เชธเชฎเชพเชœเชจเชพเช‚ เชตเชฟเช•เชพเชธ เชฎเชพเชŸเซ‡ เชนเชœเซ เชตเชงเซ เชธเชพเชฎเชพเชœเชฟเช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“ เชนเชพเชฅ เชงเชฐเซ€ เชถเช•เซ‡ เชคเซ‡เชฎ เช›เซ‡. เชคเซ‡เชจเชพ เชฎเชพเชŸเซ‡เชจเซ€ เชฏเชพเชฆเซ€ เชคเซˆเชฏเชพเชฐ เช•เชฐเชตเซ€ เชœเชฐเซ‚เชฐเซ€ เชœเชฃเชพเชฏ เช›เซ‡. เชคเซ‡เชจเซ‡ เชงเซเชฏเชพเชจเชฎเชพเช‚ เชฒเชˆเชจเซ‡ เชธเชพเชฎเชพเชœเชฟเช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“เชจเซ€ เชฏเชพเชฆเซ€ เช…เชจเซ‡ เชตเชฟเช—เชคเซ‹ เชคเซˆเชฏเชพเชฐ เช•เชฐเชตเชพเชจเซ‹ เชชเซเชฐเชฏเชคเซเชจ เช•เชฐเชตเชพเชฎเชพเช‚ เช†เชตเซเชฏเซ‹ เชนเชคเซ‹. เช† เชธเชพเชฎเชพเชœเชฟเช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“เชจเซ€ เชฏเชพเชฆเซ€เชฎเชพเช‚เชฅเซ€ เชธเชฎเชพเชœเชจเซ‡ เชตเชงเซ เช‰เชชเชฏเซ‹เช—เซ€ เชฅเชˆ เชถเช•เซ‡ เชคเซ‡เชตเซ€ เช…เชจเซ‡ เชถเซˆเช•เซเชทเชฃเชฟเช• เชธเช‚เชธเซเชฅเชพเช“ เชธเชฐเชณเชคเชพเชฅเซ€ เชฏเซ‹เชœเซ€ เชถเช•เซ‡ เชคเซ‡เชตเซ€ เชธเชพเชฎเชพเชœเชฟเช• เชชเซเชฐเชตเซƒเชคเซเชคเชฟเช“เชจเซ‡ เชœเซเชฆเซ€ เชคเชพเชฐเชตเชตเชพเชฎเชพเช‚ เช†เชตเซ€. เชคเซ‡เชจเซ‡ เช†เชตเชฐเซ€ เชฒเซ‡เชคเชพเช‚ เชธเชพเชฎเชพเชœเชฟเช• เช•เชพเชฐเซเชฏเช•เซเชฐเชฎเชจเซ€ เชธเช‚เชฐเชšเชจเชพ เช•เชฐเชตเชพเชฎเชพเช‚ เช†เชตเซ€ เช…เชจเซ‡ เชฐเชšเชพเชฏเซ‡เชฒเชพ เชธเชพเชฎเชพเชœเชฟเช• เช•เชพเชฐเซเชฏเช•เซเชฐเชฎเชจเซ€ เช…เชธเชฐเช•เชพเชฐเช•เชคเชพ เชšเช•เชพเชธเชตเชพเชจเซ‹ เชชเซเชฐเชฏเชพเชธ เชชเซเชฐเชธเซเชคเซเชค เชธเช‚เชถเซ‹เชงเชจ เชฆเซเชตเชพเชฐเชพ เชนเชพเชฅ เชงเชฐเชตเชพเชฎเชพเช‚ เช†เชตเซเชฏเซ‹ เชนเชคเซ‹

    Purinergic and Calcium Signaling in Macrophage Function and Plasticity

    Get PDF
    In addition to a fundamental role in cellular bioenergetics, the purine nucleotide adenosine triphosphate (ATP) plays a crucial role in the extracellular space as a signaling molecule. ATP and its metabolites serve as ligands for a family of receptors that are collectively referred to as purinergic receptors. These receptors were first described and characterized in the nervous system but it soon became evident that they are expressed ubiquitously. In the immune system, purinergic signals regulate the migration and activation of immune cells and they may also orchestrate the resolution of inflammation (1, 2). The intracellular signal transduction initiated by purinergic receptors is strongly coupled to Ca2+-signaling and coordination of these pathways plays a critical role in innate immunity. In this review, we provide an overview of purinergic and Ca2+-signaling in the context of macrophage phenotypic polarization and discuss the implications on macrophage function in physiological and pathological conditions
    • โ€ฆ
    corecore